Bayesian Inference for Nonstationary Spatial Covariance Structure via Spatial Deformations

نویسندگان

  • Alexandra Mello
  • Anthony O'Hagan
چکیده

In geostatistics it is common practice to assume that the underlying spatial process is stationary and isotropic, that is the spatial distribution is unchanged when the origin of the index set is translated and the process is stationary under rotations about the origin. However in environmental problems, it is not very realistic to make such assumptions since local innuences in the correlation structure of the spatial process may be clearly found in the data. This paper proposes a Bayesian model wherein the main aim is to address the anisotropy problem. Following Sampson and Guttorp (1992), we deene the correlation function of the spatial process by reference to a latent space, denoted by D, where stationarity and isotropy hold. The space where the gauged monitoring sites lie is denoted by G. We adopt a Bayesian approach in which the mapping between G space and D space is represented by an unknown function d(:). A Gaussian process prior distribution is deened for d(:). Unlike the Sampson & Guttorp approach, the mapping of both gauged and ungauged sites is handled in a single framework, and predictive inferences take explicit account of uncertainty in the mapping. Monte Carlo Markov Chain (MCMC) methods are used to obtain samples from the posterior distributions. Three examples are discussed, two simulated data sets and the solar radiation data set also analysed by Sampson & Guttorp.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Modelling Using a New Class of Nonstationary Covariance Functions.

We introduce a new class of nonstationary covariance functions for spatial modelling. Nonstationary covariance functions allow the model to adapt to spatial surfaces whose variability changes with location. The class includes a nonstationary version of the Matérn stationary covariance, in which the differentiability of the spatial surface is controlled by a parameter, freeing one from fixing th...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Estimation of nonstationary spatial covariance structure

We introduce a method for estimating nonstationary spatial covariance structure from space-time data and apply the method to an analysis of Sydney wind patterns. Our method constructs a process honouring a given spatial covariance matrix at observing stations and uses one or more stationary processes to describe conditional behaviour given observing site values. The stationary processes give a ...

متن کامل

PARTIAL FULFILLMENT OF THE REQUIREMENTS for the degree DOCTOR OF PHILOSOPHY in STATISTICS

Recent work in the areas of nonparametric regression and spatial smoothing has focused on modelling functions of inhomogeneous smoothness. In the regression literature, important progress has been made in fitting free-knot spline models in a Bayesian context, with knots automatically being placed more densely in regions of the covariate space in which the function varies more quickly. In the sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000